Technical Feasibility of Storage on Large Dish Stirling Systems

Sandia National Laboratories

Chuck Andraka

ceandra@sandia.gov

(505)844-8573

CONCENTRATING SOLAR POWER: SYSTEMS

Introduction & Background

Concept

Adding up to 6 hours of storage to high-performance dish-Stirling systems has the potential to increase performance, improve capacity, and enhance interest, making dish-Stirling systems a leading candidate to meet SunShot goals

Why dish-Stirling?

- Demonstrated over 31% sun-to-grid, 26% annual
- High temperature, high concentration systems
- Highest efficiency thermodynamic cycle
- 6¢-8¢/kWh attainable with engineering and supply chain

Latent heat transport and storage

- Isothermal input to engine
- Best match to isothermal transport, isothermal storage
- High exergy efficiency
- Isothermal transport has additional demonstrated system performance improvements
- 10-20% system performance boost
- Independent optimization of receiver, storage, engine
- Heat pipe is a "thermal transformer"
- First- and second-law improvements over existing systems

Position in Heat Exchanger

System Level Model

System layout

- Two heat pipes in series
- Metallic PCM storage

Field-level model

- Dish-to-dish shading
- Annual meteorological data (15minute)

Engine Na working fluid working fluid

Storage accumulator model

- Thermal input from met data
- Shed energy when full (lost)
- Thermal output when engine running (constant 2kW When storage not empty Input and output based on measured system data with heat pipe receiver Engine Output (Constant 66.65kW when engine running)

Financial model

- Calculate LCOE based on 7.42% FCR
- Calculate "profit" based on SCE TOD
- Adjust dish and field size proportional to solar multiple Fixed and variable cost of storage
 - \$3k/dish fixed
- \$20/kWhth variable with storage size
- System cost set to \$2/W

Season	Period	Definition	Factor
Summer June 1 - September 30	On-Peak	WDxH ¹ , noon-6 pm	3.13
	Mid-Peak	WDxH, 8-noon, 6-11 pm	1.35
	Off-Peak	All other times	0.75
Winter October 1 - May 31	Mid-Peak	WDxH, 8 am-9 pm	1.00
	Off-Peak	WDxH, 6-8 am, 9 pm- midnight; WE/H ² 6 am- midnight	0.83
	Super-Off-Peak	Midnight-6 am	0.61

WDxH is defined as weekdays except holidays 2/ WE/H is defined as weekends and holidays

Model inputs exercised

- Size of storage
- Solar multiple
- Control modes

Model Results

Clear financial benefit

- About 1¢/kWh LCOE
- 2 ¢/kWh profit, due to TOD mapping

Clear optimum in Solar Multiple at 1.25 for cases studied

- Greater storage improves LCOE to a point
- Better amortization of equipment costs
- Too much storage cannot be consistently used

- Maximized lucrative summer PM hours
- Generation to midnight in summer

Total energy increase

- Greater collection area (solar multiple)
- Higher efficiency (always at design point of engine)

Summer afternoon critical to profit

Summary and Future Work

Key findings

- Dish storage can improve LCOE and Profit
- Receiver and engine performance improves
- Full utilization of summer peaks
- Amortize system costs over more energy Storage size and solar multiple feasible
- Cloudy days are not overcome by storage
- Design and control strategies must account for profit, TOD pricing, capacity payments, and transmission requirements

Path forward

- Demonstration of key hardware components
- High performance heat pipe receivers
- High conductivity PCM thermal storage
- Materials compatibility and durability
- Integration with leading dish systems Optimize PCM interface design

PCM Interface Modeling

Bench-scale heat pipe durability test rig

